

A Fast Track to Software Modernization

Introduction

Legacy software applications are very valuable assets. Most CIO’s and CEO’s know this, in spite of

the fact that today’s balance sheets rarely show their real value. Typically, over the years large

investments in intellectual capital have been imbedded in the legacy systems, but more often than

not, those investments have been booked as expenses (the salaries of all those involved in

development, maintenance and enhancement of legacy applications).

There are vast amounts of legacy systems throughout the world; there are also many definitions of

what a legacy system is. It is in fact of little value to lucubrate on definitions of legacy systems;

suffice it to say that legacy systems are valuable (they work). In this document, the term “legacy”

refers to any existing software application that works, disregarding of its programming language age.

Legacy applications, like other intangible assets, are harder to imitate by competitors, and thus

differentiators and a source of competitive advantage1.

This White Paper describes a Computer-Assisted Source Code Transformation methodology and

discusses how it can accelerate financial pay back as well as many intangible benefits of Legacy

Modernization. The methodology can also be used in conjunction with code analysis and

understanding approaches, once the legacy has been migrated.

The main body of the paper is a step-by-step description of a methodology (based on computer-

assisted source code transformation technology and principles) utilized to transform legacy

applications to modern platforms in a safe, fast and cost effective manner. It briefly describes the

high-level evaluation criteria that lead to the decision to modernize a large legacy system.

During the first 40 years of software engineering, deciding on a target platform and trying to have a

single platform in larges organizations has been hard, conflictive and elusive. It is only now, after

decades of building and rebuilding systems, that a single unified target platform is both feasible and

a practical objective to aim for. It is argued that the large integration problems that most large

organizations face today essentially disappear once a unified modern software platform is achieved.

The existence of software tools and methodologies to support the software transformation process

enables an increase in flexibility, efficiency, control and cost effectiveness of IT evolution. These

technologies improve return on investment on software assets, now and in the future.

Legacy Modernization needs

The decision to modernize a legacy system can be related to many circumstances, cost not being

the least of it. Retaining the value of the legacy application is a common objective of most

modernization efforts, for even if the value is not accurately known, it is certainly worth retaining. The

cost of discarding a valuable software asset goes far beyond its value as the organizational

disruption and loss of competitive edge can dwarf the additional cost of the new replacement asset.

Apart from cost, organizations are often moved to modernize legacy systems by several factors

which can be summed up as lack of strategic flexibility. Some of the factors that can severely hinder

the organization are:

• vendor dependence,

• lack of trained personnel in the labor market,

• long time to market,

• legal/regulatory compliance requirements, and

• poor integration capability.

While none of these factors is in and of itself crippling, they all lessen an organization’s agility,

increase operating costs and tend to undermine its competitive position.

The need to modernize legacy systems is not new; it has been a thorny issue from the beginning.

Obviously, as time passes the factors listed above are exacerbated prompting management to act.

The sharp increase in legacy modernization in recent years is, however, due to two separate and

relatively new developments.

First, there is now a clear path as to what technologies to aim for. As recent as 5 years ago, this was

not clear, but now it is agreed that n-tier architectures based on either .NET or J2EE software are the

desired target platforms. Secondly, also in the last few years, there has been a substantial

improvement of the quality and completeness of software transformation and understanding tools.

So, the question top management faces when addressing the need to modernize legacy systems is:

how to retain the value of these software assets whilst freeing the organization from some or all the

factors listed above?

Due to the very favorable cost, time and risk associated, source code transformation solution is, in

many cases, the preferred approach. This approach allows the intellectual capital invested in the

legacy system over the years to be fully recovered and combined with all the benefits associated to

the new technology platforms. This is done in a very efficient and safe manner, especially when

compared to highly labor-intensive alternatives.

We go as far as to say that transformation should happen very early in the process, even before the

legacy system, and all its architectural quirks, are fully understood. Experience shows that

understanding and re-architecting the legacy application is best performed under the new technology

platforms, as not only the power of the new IDEs becomes available, but also a plethora of other new

software technologies can aide in this process, making the control of the process much more

effective. With the old programming languages it is difficult or unnatural to represent some of the

modern software engineering concepts, such as components, tiers, etc. Furthermore, correctness of

results can be directly corroborated by applying the Functional Equivalence principle to the original

application.

Finally, those difficult synchronization problems associated with the need to freeze code evolution

during the modernization process are greatly reduced as explained below.

If the approach presented in this paper has a flaw, it must be the possibility that, having achieved a

very high return on investment after the source code transformation, and due to day-to-day

pressures, some of the re-architectural work may not be conveniently concluded before the project is

delivered.

When and How to modernize

A two step approach is presented. First, concepts from Kaplan & Norton are used to aid the decision

to modernize a legacy application. Once the decision to modernize has been taken, the methodology

follows with concepts from Declan Good’s research2 to decide how best to modernize.

Kaplan & Norton’s Strategic Readiness concept evaluates how readily an application can support the

crucial business processes required to achieve the organization’s strategic objectives. It does this

methodically; by first identifying which are the crucial processes and then evaluating how well the

existing application(s) and its infrastructure support them.

The degree of readiness, according to Kaplan & Norton, is measured in a subjective way but relative

to all applications being thus evaluated. Applications required to support the crucial business

processes are evaluated on how well can they support the processes now, and when will they be

available to give the required support. Some, albeit few, applications will be deemed “ready”, these

are probably already available in the form and with the required infrastructure, others will be deemed

“almost ready” depending on how much time and effort is required to make them available, whilst

other still will be deemed “not ready”. Legacy applications that fall into these last two categories must

clearly be modernized.

Legacy applications that do not support crucial business processes (for example back office

systems) may still require modernization, but this typically is a financial decision rather than a

strategic technical one.

In general once the decision to modernize a legacy application has been taken, there are four broad

alternatives (routes) that can be followed: re-write the application, replace it with a package, wrap it

with modern technology to make it look better, or transform it using a combination of automated

and/or manual tools.

Declan Good’s describes of this decision process as an evaluation of the quality of the application

and of the availability of replacement packages. The term “quality” in this context refers to how well

the application does what it does, and whether the functionality it lacks is due to it’s architecture or its

infrastructure. In general the “quality” of an application is considered low when the application fails

often, rework and workarounds are often required, and/or it is deemed that the architecture is a

severe impediment to developing the new required functionality, even if the infrastructure (software

and hardware platforms) were different.

The availability of a replacement package refers to the uniqueness of the application and/or the

organization. In general if the application under evaluation supports, or will support, crucial business

processes that are critical to achieve strategic objectives, then using a package implies that the

process in question is not unique and therefore not a source of competitive advantage. At best a

package can, under these circumstances, deliver a short term advantage because packages can be

easily imitated.

The following diagram3 shows the combinations of factors that might lead to the four options:

Good’s approach allows a first hint of which alternatives are best suited for a given application. The

decision is hardly ever clear cut as suitableness of a package and/or the quality of the existing

applications is a rather subjective measurement and especially because such decision cannot be

taken without considering time, cost and risk.

All alternatives should have their time and cost measured in the same, most comprehensive, way.

Risk, on the other hand, must be evaluated relative to the other alternatives. Rather than an absolute

measurement of risk, a ranking indicating the risk of each alternative in relation to the others must be

arrived at.

Risk, in this context, has to do with organizational disruption, past experience in meeting deadlines,

available knowledge (related to new technology or packaged application), future dependence on a

supplier, and other factors that can influence the final outcome of the project.

Once cost, time and risk are evaluated for all alternatives, the relative standing of each alternative

should be graphed in order for top management to make the final decision. The following example

presents a hypothetical comparison between Replace, Rewrite and Transform alternatives for given

application. The Re-use alternative refers to wrapping the legacy application with new technology to

make it look better, but this alternative is only skin deep whilst making the overall application more

complex. Almost by definition, the re-use alternative is only a short term measure.

Cost Time Risk

Transform ($300K) Transform (9 months) Replace (low)

Replace ($500K) Replace (12 months) Transform (medium)

Rewrite ($1M) Rewrite (18 months) Rewrite (high)

Obviously, only when the same alternative offers minimum cost, time and risk, is the decision simple.

In the example above, management must decide whether to accept some risk in order to minimize

cost and time, or pay more and wait longer in order to minimize risk.

Methodologies for replacement by a package, entire rewrite, or re-use by wrapping exists. In here,

the following presentation is specifically focused on the required methodology for transforming

applications.

The methodology required for Application Transformation begins when the scope of the system to be

modernized has been defined together with the target platform and architecture. Detailed planning of

a legacy modernization project must include: project assessment, transformation strategy, test suite

definition, final architecture requirements, testing strategy, training strategy and, implementation

strategy.

Assessment and Preparation

Large systems usually require a modular transformation, implementation and re-architecturing

strategies. It is not always straightforward to break up a legacy system into modules that make sense

to transform, implement or re-architect on their own. Interdependencies within and between modules

can be, and usually are, quite complex.

Computer-assisted source code transformation tools typically do a first run looking for (and tagging)

excessively redundant code (very common when reuse was achieved through cut and paste),

graphing out interdependencies within and between all the code to be migrated, performing basic

code re-factoring, and assessing the manual work that would be required once the transformation

tool is used.

Excessively redundant code can be encapsulated and simplified during the next phase. The

interdependencies graph is a valuable tool if modules need to be carved out for implementation

purposes (See Figure 1). Figure 1 not only shows dependencies but also suggests logical application

subsystems that could be considered module candidates.

Figure 1. Example of a simple dependency graph. Rectangles indicate the partition detected

in the graph.

Code redundancy can be found not only at the application logic level, but also at the data structure

level, when repeated structures are used in registers and working areas, such as:

01 W0-DATE

05 W0-MONTH

05 FILLER

05 W0-DAY

05 FILLER

05 W0-YEAR

The first run over the source code can also show syntactic constructs which if changed before using

the transformation tool would enhance the automation and increase the quality of the generated

code (basic re-factoring). In these cases, those constructs are manually or automatically changed

before migration.

Functional Equivalence

In order to be successful, software modernization projects need to keep a clear separation of

concerns in subsequent process phases. Experience has demonstrated that the transformation of

the application infrastructure, i.e. language, operating system, etc., needs to be isolated from other

modernization duties, such as new functionalities, re-architecture or application deployment

strategies.

The principle of Functional Equivalence is highly useful tenet of computer-assisted software

transformation. Functional Equivalence guarantees that each action taken on the application logic

doesn’t change its functionality and therefore assures a correct recovery of the program logic.

Utilizing automated tools without this principle will most certainly imply long and painful debugging

processes.

Functional Equivalence must be attained before other actions that can change the application

functionality, such as re-factoring, re-architecture, or further application evolution tasks, are taken on

the code.

To assure Functional Equivalence, it is necessary to put together comprehensive unit and system

test suites, for the whole system to be migrated, as well as for individual migration modules (if they

are required). Test suites must be exercised by automatic tools that compare expected with actual

results.

It is the obsessiveness with which Functional Equivalence is maintained that makes the risk of this

project so much less than other alternatives (like rewriting or replacing the system). Any automated

tools used for the transformation of the code must guarantee the preservation of Functional

Equivalence; each low or high level transformation performed must always guarantee the

preservation of the semantic contents. In this way, it is possible to perform a bottom-up

transformation of a large system with minimum risk.

The process is not, however, without risk. The future modernization phases, such as code

understanding, maintainability, and evolution, demand a high quality of the generated code and

therefore impose important constraints on how far the automated transformation phase should go.

Furthermore, when transforming legacy languages and programming paradigms to modern ones,

there are, invariably some constructs, which do not have an equivalent in the new platform. Powerful

pattern matching technologies allow searching and mappings of large constructs (as opposed to

term by term mapping/translation), this greatly increases the level of automation and the quality of

the thus generated code, but even then it hardly ever reaches 100% functional equivalence through

fully automated procedures.

Source code transformation

Powerful transformation tools can transform source code from existing environments (like

Informix4GL, or Visual Basic 6) to modern platforms (like .NET) to about 90% effectiveness. The

code that is not automatically transformed is documented and marked for revision by trained

engineers. This is when software engineering discipline must be exercised, test suites executed,

transformation rules changed and manual changes made in an iterative loop until 100% Functional

Equivalence is reached.

The tools available nowadays are not only capable of matching and transforming large chunks of

code to their equivalent in the destination platform, but are also able to find and eliminate

repeated/redundant code and suggest its encapsulation/reuse for further consideration of the trained

engineers. In this way, the source code transformation can be seen as not only transforming the

source language, but also the programming paradigm (like from procedural to OO).

Automatic recording of manual changes and ways of extending and adapting the transformation tools

with specific-purpose rules supplement modern transformation tools. The use of these companion

techniques brings very significant reductions on the time required to freeze code evolution during

migration.

A tool that is capable of transforming 90% of any source code for a give pair of languages requires

10 times more time and effort to perfect than a tool capable of transforming 90% of a specific source

code. For this reason, it is found that often the tools, and their rule base, need a certain amount of

tuning to reach the required level of automation for a given application. There are very few tools in

the market today that can claim a high level of automation for any application.

With a tool that is 90% efficient, experience shows that trained engineers can easily work through

28000 lines of the code per month (correcting the issues that were not automatically transformed).

This means that, the automation of the transformation process increases the productivity of the

engineers (compared to manual development) by at least 8 times, using productivity statistics for

modern programming languages from the Software Research Institute, and Gardner Group. When

re-architecturing and functionality enhancements are added to the equation, the engineers’

productivity will be greatly reduced, to about 3 times more productive than manual development.

Migration

Once Functional Equivalence is reached, the system can be migrated to the new hardware and/or

software platform, and the platform specific optimizations efforts be performed. Since the users

require no retraining (due to Functional Equivalence) the system can usually go into production very

quickly, and, although modernization is usually by no means complete, a large portion of the financial

benefits (usually related to the hardware and software platform) can now be accrued.

The time required for a transformed system to go into production varies depending on the size of the

system, the number and geographical dispersion of the users and on logistical issues, which can be

associated to the roll out of the new platform. But in general, for a large system, this time is within a

couple of years of the project commencing. For medium and small systems the time can be as little

as a few months.

If, for a number of reasons, migration is to be done one module at a time, it is then necessary to build

“scaffolding” to integrate the new module with the legacy system. This is readily achieved by

manually or automatically generating the necessary middleware code (this is helped by the

interdependencies graph produced in the very early stage of transformation, or a reviewed version of

the new code). After each module is implemented, the whole middleware code thus generated is

discarded and a new one generated. Obviously, if the number of modules is more than two or three,

the generation of the middleware code could be done automatically.

Migration of a medium size legacy system (5 or 6 million lines of code) typically takes around 6 to 9

months. After which the organization is already enjoying the benefits of the new platform as well as

the financial savings from discarding the old one.

Enhancement

The modernization process however, is usually not completed at this stage. The resulting software

running in the new platform might still require reengineering, componentization, refactoring and

possibly functionality replacement and/or enhancement.

Powerful source code understanding tools can now be used on the transformed code to gain insight

on how best to re-architect the code. It is one of our main contentions that this is best done after, and

not before, the code is transformed because, not only are the tools to work on the new platforms

much more powerful, but also the new generation of engineers is much more conversed with them.

A corollary to platform migration and unification (all the organization’s systems can end up in the

same platform) is that the application integration problem, disappear. When all organization’s

systems run on the same modern platform, Service Oriented Architecture is readily implemented and

the integration between modules and/or systems becomes simpler and transparent.

1 Kaplan & Norton, “Measuring the Strategic Readiness of Intangible Assets”, HBR, February, 2004
2 Declan Good, "Legacy Transformation", CIT 2002
3 Diagram adapted from a presentation by Len Erlikh of Relativity Technologies, Inc

